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Traditional approach to simulation-based optimization

• Analysis (simulation)
– Given a vector of design variables x, a simulation or a system of 

simulations computes responses u(x) of interest by solving a system 
A(x,u(x)) = 0

• Optimization
– Do until convergence

1. Build local models (usually Taylor series) of the objective and 
constraints based on information computed directly by the high-
fidelity simulation

2. Compute a trial step by solving a local model-based subproblem
3. Use a globalization technique (e.g., trust regions) to improve 

convergence
– End do

• But…



Features of realistic design problems

• Examples of difficulties heard in previous talks (e.g., Nielsen)
• Summary of limiting factors

– Modeling
• Functions are expensive and not robust

• Difficult to obtain reliable and affordable derivatives

– Optimization
• Algorithms must be fault-tolerant to a high degree
• Derivative-based optimization is expensive for problems with high-

fidelity simulations
• Derivative-free optimization is prohibitively expensive for large 

problems, although is becoming more practical (see, e.g., Giunta)



A remedy for expense of simulations

• Instead of local, Taylor series-based models, use models that 
have better global approximation properties:
– Variable accuracy (converge to user-specified tolerance)
– Variable resolution (vary degree of mesh refinement)
– Variable-fidelity physics (e.g., inviscid flow vs. Navier-Stokes)
– Data fitting (kriging, response surfaces, reduced order, etc.)

• Some examples in these sessions (Campana, Giunta)
• At LaRC

– Address expense and lack of robustness in function evaluation via 
Approximation and Model Management Optimization (AMMO, 
Alexandrov et al.)

– Demonstrations with variable-fidelity physics and variable resolution 
models in aerodynamic optimization

– Convergence to high-fidelity answers with currently 5-fold savings in 
terms of high-fidelity simulations

• But…



Example: small multidisciplinary analysis (MDA)



Multidisciplinary optimization (MDO)

MDO = systematic approaches to the design of complex, 
coupled systems

Multidisciplinary: different aspects of the design problem (e.g., 
controls, aerodynamics, structures, propulsion, etc. for 
aerospace vehicle) 

Design ≠ Nonlinear Programming!

Limit discussion to the subset of the total design problem that 
can be represented as a nonlinear program (NLP)



Efficiency considerations in solving MDO problems

• Computational efficiency of disciplinary components
• Problem synthesis (implementation)

– Disciplinary interfaces
– Data standards
– Computational frameworks

• Effect of problem formulation
– Computational efficiency/tractability
– Convergence and robustness
– Disciplinary autonomy

• Let disciplines design independently
• Keep local design variables in disciplines



Influence of formulation on performance

Example: HPCCP formulation study, Alexandrov & Kodiyalam, AIAA 1998-4884 

System Optimization
minimize f(x)
s.t. design constraints

Analysis1 AnalysisN
…

Multidisciplinary Analysis (MDA)

Fully Integrated Optimization (FIO)

state variables
objective

constraints

design variables

System Optimization
minimize f(x)
s.t. design constraints

interdisciplinary consistency constraints

Analysis1 AnalysisN…

Distributed Analysis Optimization 
(DAO) System Optimization

minimize f(x)
s.t. interdisciplinary consistency constraints

Subsystem Optimization
minimize inconsistency
s.t. disc. constraints

Subsystem Optimization
minimize inconsistency
s.t. disc. constraints

Analysis1 AnalysisN…

Collaborative Optimization (CO)



Influence of formulation on performance

• Analytical features of MDO problem formulations, e.g., the 
degree of disciplinary autonomy, directly affects the ability of
numerical algorithms to solve the problem reliably and 
efficiently

Cost of optimization in terms of analyses for 7 MDO Test Suite problems

69105840125837210217851987215626CO

N/A932544N/A38287969530DAO

87305024323481610220610FIO

7654321



MDA:
A1
…
AN

(fixed-point procedure)

MDO Problem Synthesis / Implementation

MDA
sensitivities

OPTIMIZER

Analysis i

Problem: 
design for objective f with

li

s

i = 1, …, N

ai
• Successful MDO-NLP usually in academic 

environments (simulation codes open to 
modification) or via ad hoc approaches

• Realistic MDO

– Heroic software integration for MDA
– MDA = (usually) fixed-point iteration; too 

rigid
– May leave no resources for computing 

derivatives or experimenting with 
optimization

– Difficult to get MDA-based objectives and 
constraints automatically

– To reformulate the problem, need to 
“unscramble” codes

• ∴One-of-a-kind, monolithic implementations
• Want flexible and/or hybrid reconfigurable 

formulations 



Idea of reconfigurability

• Computational component-based approach to MDO 
problem synthesis that allows for straightforward 
transformation among problem formulations within 
optimization algorithms
– All MDO formulations are related and share the basic 

computational components
– Appropriate implementation enables re-use of 

components in a straightforward way

• Long-term plan: Tools for formulation analysis and matching 
with optimization algorithms to be included in computational 
frameworks



Origins of reconfigurability

• The capacity for reconfigurability stems from the relationship 
among formulations

• Two-discipline model problem:
e.g., loads

e.g., shape



Simultaneous Analysis and Design (SAND)

disciplinary constraints

analysis constraints

consistency constraints

Relax all couplings;
All variables independent



SAND, cont.

• Advantages
– No need for expensive analyses far from solution
– Reduced nonlinearity in NLP

• Disadvantages
– Analyses may not be readily available in residual form
– Potentially huge number of variables
– Analysis solution techniques must be integrated with optimization
– Intermediate designs may not be physically realizable
– Disciplinary autonomy unclear

• All other formulations may be viewed as derived from the 
SAND formulation by eliminating a particular set of 
independent variables from the optimization problem via 
closing a particular set of constraints or solving optimization 
problems.



Distributed Analysis Optimization (DAO)

Close disciplinary consistency constraints;
relax the coupling in MDA; maintain disciplinary analyses

disciplinary constraints

consistency constraints

(Versions known as Individual Discipline Feasible, In-Between, etc.)



DAO, cont.

• Advantages
– Some measure disciplinary autonomy
– Fewer design variables than in SAND
– Conventional single-level NLP

• Disadvantages
– Intermediate designs may not be physically realizable (although 

perhaps less “disciplinary infeasible” than in SAND)
– Disciplinary autonomy limited – optimization problem deals with both 

local and shared variables



Fully Integrated Optimization (FIO)



FIO, cont.

• Advantages
– Smallest set of design variables
– Intermediate designs are realizable – can stop optimization away from 

optimality for lack of resources

• Disadvantages
– Requires MDA
– Requires derivatives of MDA
– MD processes are difficult to converge 
– Disciplinary autonomy limited



Hierarchy of formulations and reconfigurability

• Start with SAND – all variables independent (s,l1,l2,t1,t2,a1,a2)
• Eliminate (t1,t2,a1,a2) via MDA � FIO
• Eliminate (a1,a2) via disciplinary analyses � DAO
• Eliminate (a1,a2) via disciplinary analyses + eliminate (l1,l2) via disciplinary 

design constraints � generally leads to bilevel optimization problems
– Significant degree of disciplinary autonomy
– Bilevel program with a badly behaved system-level problem
– Causes conventional algorithms to fail or be slow (NMA/RML, AIAA J.)

• Computational components remain unchanged
• Standard results on reduced derivatives tell us that the sensitivities in 

DAO and FIO are related to those in SAND via variable reduction
• Therefore, computational components of one formulation can be 

reconfigured to yield those of another in the context specific algorithms



Reduced derivatives



Reduced derivatives

Reduced gradient

Reduced Hessian of the Lagrangian



Barrier-SQP approach to SAND

Now illustrate reconfigurability in the context of a specific 
class of algorithms, barrier-SQP methods



Barrier-SQP approach to DAO



Relationship among SAND, DAO, FIO Sensitivities



Solving barrier-SQP subproblem



Reduced-basis approach to barrier-SQP subproblem

• For a specific choice of algorithm for solving the barrier-SQP 
subproblem, can say even more about the relationship 
among the computational elements needed to solve the three 
formulations

• The relationship among the sensitivities means that it is 
possible to implement an optimization algorithm for SAND so 
that with a single modification we obtain an algorithm for 
DAO or FIO



Reduced-basis barrier-SQP for SAND



Reduced-basis SQP for FIO and DAO



Other algorithms

• Outlined reconfigurable scheme should work for other 
methods that handle inequalities via a penalty function 
(e.g., augmented Lagrangian)

• Active set methods are likely to take more work



Concluding remarks

• MDO problem formulation directly affects the tractability of 
the problem and efficiency of solution

• Conjecture: A method for MDO can possess at most two of 
the following three attributes:

• Computational autonomy
• Computational robustness
• Computational efficiency

• Regardless of the formulation, there is a clear need for 
flexible problem synthesis and easy reconfiguration

• Basic computational components combined with 
transformations within specific algorithms form a promising 
approach


